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Abstract

The following documentation aims to give an overview of what different operations can be done
with the file case q 3.py. These include operations among some special infinite upper triangular
matrices, also in the case in which there are some unknown upper diagonals. In particular, the file
introduces two different classes, N and NX, and defines functions which take arguments from both or
either of the classes.

A quick reference
This part provides a quick guide on how to use the file. For a more detailed explanation refer to the
later sections.
The file allows to do operations with elements of a particular group. Consider

G =< x0, ..., x12|x3
i = Id, xixi+1xi+4 = Id >,

where Id denotes the identity element and subscripts are taken modulo 13 (see [3]).
There is a faithful representation of G in the group of finite band upper triangular infinite matrices with
entries in M(3,F3), invertible entries on the main diagonal, and entries on the diagonals with periodicity
3 (gij = gi+3,j+3 for all i, j ≥ 1 for any g in this group).
Each element in G may thus be identified with an infinite matrix of this type.
The generators are all built-in and can be called by x0,..., x12.
A diagonal can be described equivalently by a 3 × 9 matrix with entries in F3 or by a 3-tuple of non-
negative numbers, each less than or equal to 19683. Indeed, if the first 3 entries on an upper diagonal
are a1, a2, a3 ∈ M(3,F3), the 3 × 9 matrix [a1, a2, a3] will describe the diagonal entirely, because of the
periodicity 3. Moreover, for k = 1, 2, 3, the matrix ((ak)ij)1≤i,j≤3 can be represented by the number
Ak = 38(ak)11 + 37(ak)12 + 36(ak)13 + 35(ak)21 + 34(ak)22 + 33(ak)23 + 32(ak)31 + 3(ak)32 + (ak)33.
Therefore, [A1, A2, A3] describes the same upper diagonal as [a1, a2, a3].
For instance,

>>> x0
N ([[9613, 9613, 9613], [5859, 5859, 5859], [2970, 2970, 2970], [5859, 5859, 5859],
[2970, 2970, 0], [5859, 0, 0]])
>>> print x0
N([matrix([[1, 1, 1, 1, 1, 1, 1, 1, 1],

[0, 1, 2, 0, 1, 2, 0, 1, 2],
[0, 0, 1, 0, 0, 1, 0, 0, 1]]), matrix([[0, 2, 2, 0, 2, 2, 0, 2, 2],
[0, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]), matrix([[0, 1, 1, 0, 1, 1, 0, 1, 1],
[0, 0, 2, 0, 0, 2, 0, 0, 2],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]), matrix([[0, 2, 2, 0, 2, 2, 0, 2, 2],
[0, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]), matrix([[0, 1, 1, 0, 1, 1, 0, 0, 0],
[0, 0, 2, 0, 0, 2, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]]), matrix([[0, 2, 2, 0, 0, 0, 0, 0, 0],
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[0, 0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])])

means that x0 is the infinite upper triangular matrix whose diagonal is described by the 3-tuple [9613, 9613, 9613]
and whose subsequent five upper diagonals are described, in order, by [5859, 5859, 5859], [2970, 2970, 2970],
[5859, 5859, 5859], [2970, 2970, 0], [5859, 0, 0]. All other upper diagonals are zero.
We can multiply and take powers. For example, x3x

−1
6 x2

5 would be

>>> x3*(x6**(-1))*(x5**2)
N ([[11773, 2848, 1192], [4401, 845, 163], [5022, 924, 4631], [5238, 15317, 2417],
[14742, 3006, 920], [9477, 5942, 8389], [5265, 15733, 12955], [9612, 5260, 0], [14904, 0, 0]])

We can also work with elements of which only some upper diagonals are known. For instance,

>>> x=NX([9613, 9613, 9613])
>>> x
N ([[9613, 9613, 9613]],?)
>>> x.conj(x2)
N ([[9613, 12970, 6931]],?)
>>> x0.comm(x)
N ([[6643, 6643, 6643]],?)

Here x.conj(x2) and x0.comm(x) give x−1x2x and x−1
0 x−1x0x respectively. Finally, we can truncate

elements in the following way:

>>> c=x5**2
>>> c
N ([[11773, 9933, 6949], [9693, 13672, 83], [14823, 871, 598], [3699, 6547, 531],
[19062, 6851, 0], [7776, 0, 0]])
>>> c.trunc(2)
N ([[11773, 9933, 6949], [9693, 13672, 83]],?)

A more detailed guide
1 Useful procedures
The first part of the code defines some useful operations.

inversematrix3(A): Let A ∈M(3,F3) be invertible. Then inversematrix3(A) returns the inverse
of A modulo 3.

inversebigmatrix3(B): Let B be an upper triangular square matrix of arbitrary dimension, whose
entries are 3×3matrices over F3 and whose diagonal entries are invertible modulo 3. Then inversebigmatrix3(B)
returns the inverse of B modulo 3.

transfmn3(M): Let M = (Mij)1≤i,j≤3 be a 3 × 3 matrix with entries in F3. Then transfmn3(M)
returns the integer 38M11 + 37M12 + 36M13 + 35M21 + 34M22 + 33M23 + 32M31 + 3M32 +M33.

transfnm3(n): Given an integer 1 ≤ n ≤ 19683, transfnm3(n) returns the unique 3× 3 matrix M
with entries in F3 such that transfmn3(M) == n.

extract(k,M):
Let M = (Mij)1≤i≤3, 1≤j≤9 be a 3× 9 matrix.
If k is an integer such that 1 ≤ k ≤ 3, extract(k,M) returns the 3× 3 matrix (Mij)1≤i≤3, 3k−2≤j≤3k.
For all other choices of k, the function returns:
’You entered a value of k out of range: k must be an integer between 1 and 3’.
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comb(U1,U2,U3):
Given the 3 × 3 matrices U1, U2, U3, comb(U1,U2,U3) returns the unique 3 × 9 matrix U such that
extract(i,M) == Ui, for 1 ≤ i ≤ 3.

numm3(ss):
The function numm3 takes a list ss of three non-negative integers less than or equal to 19683 and returns
the 3× 9 matrix comb(transfnm3(ss[0]),transfnm3(ss[1]),transfnm3(ss[2])).

matt3(M):
The function matt3 is the inverse of numm3: it takes a 3 × 9 matrix, reduces it modulo 3, and returns
the corresponding 3-tuple of integers.

Example 1.

>>> A=matrix([[2,2,1],[0,1,0],[2,1,2]])
>>> Ainv=inversematrix3(A)
>>> Ainv
matrix([[1, 0, 1],

[0, 1, 0],
[2, 1, 1]])

>>> transfmn3(A)
18329
>>> transfnm3(_)
matrix([[2, 2, 1],

[0, 1, 0],
[2, 1, 2]])

>>> B=matrix([[0, 2, 2, 0, 2, 2, 0, 2, 2],
[0, 0, 1, 0, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 0, 0, 0]])

>>> extract(1,B)
matrix([[0, 2, 2],

[0, 0, 1],
[0, 0, 0]])

>>> comb(Ainv,extract(3,B),A)
matrix([[1, 0, 1, 0, 2, 2, 2, 2, 1],

[0, 1, 0, 0, 0, 1, 0, 1, 0],
[2, 1, 1, 0, 0, 0, 2, 1, 2]])

>>> numm3([1,271,55])
matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 1, 0, 0, 2],
[0, 0, 1, 0, 0, 1, 0, 0, 1]])

>>> matt3(_)
[1, 271, 55]

2 The class N

2.1 Instances of N

An instance g in this class represents an infinite upper triangular matrix with the following properties:

1. Each entry is a 3× 3 matrix over F3;

2. Each diagonal entry is invertible (in particular, each diagonal entry of a generator has order 3);

3. gij = gi+3,j+3 for all i, j ≥ 1;
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4. There exists n ≥ 1 such that gij = 0 for all i, j with j − i ≥ n, where 0 denotes the 3 × 3 zero
matrix.

Because of Property 3, we may define an upper diagonal by a 3× 9 matrix (see [1]).
We define an element g in N in the following way. Let U1, ..., Um be 3×9matrices. Then g=N(U1,...,Um)
defines the element of N with the diagonal described by U1 and m − 1 upper diagonals described by
U2, ..., Um. All other upper diagonals are zero. The matrices U1, ..., Um may be replaced by the corre-
sponding 3-tuples of numbers.

print g:
Assume Um is not the zero matrix. Then the command print g gives N([U1,...,Um]) and we can call
[U1, ..., Um] by g.m.
If Ui = 0 for all i ≥ j for some 1 < j ≤ m and Uj−1 is non zero, then print g gives N([U1,...,Uj-1]).
Finally, if we enter g=N([6643, 6643, 6643])), print g gives Id.

g:
Just typing g in the shell gives the same output as print g, but with the 3 × 9 matrices replaced by
3-tuples of numbers. It is the same as print g.transfmn() (see 2.2). Note, however, that while the
latter may be used also in the file, the command g gives an output only if typed in the shell.

Example 2.

>>> x12
N ([[9613, 2662, 10641], [18495, 19372, 4569], [15606, 3760, 3487], [5859, 11631, 5812],
[10746, 10070, 0], [11448, 0, 0]])
>>> g=N(matrix([[1,0,0,1,0,0,1,0,0],[0,1,0,0,1,0,0,1,0],[0,0,1,0,0,1,0,0,1]]))
>>> g
Id
>>> h=N([7393, 5859, 18329],[0,0,0])
>>> print h
N([matrix([[1, 0, 1, 0, 2, 2, 2, 2, 1],

[0, 1, 0, 0, 0, 1, 0, 1, 0],
[2, 1, 1, 0, 0, 0, 2, 1, 2]])])

2.2 Operations within the class N

__eq__() and __ne__():
We can compare instances in N in the obvious way.
For g, h in N, g==h (resp. g!=h) returns True (resp. False) if g and h represent the same matrix and
False (resp. True) otherwise.

transfmn():
Given an instance g=N(U1,...,Um) of N, the command g.transfmn() returns
N([[n11,n12,n13],...,[nm1,nm2,nm3]]), where 0 ≤ nij ≤ 19683 represents the matrix j of Ui.

ext(n,m):
Given g in N and n,m positive integers, g.ext(n,m) is the n×m matrix obtained from the first n rows
and first m columns of the infinite matrix represented by g.

__mul__():
Given g, h in N, g*h returns g · h.

inv():
g.inv() returns the inverse of g. If the precision parameter is large enough, the output of print
g.inv() is an element in N; otherwise, it is an element in NX (see Section 3).
The precision parameter is set by default to be equal to 1 and can be modified by overwriting the global
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variable precinv (see below).

precinv:
As mentioned above, the global variable precinv controls the maximum number of upper diagonals we
allow to be computed in the inverse. Suppose g has m non zero diagonals. When we type g.inv(), the
function inv() will find the exact inverse of g if this has at most precinv ·m non zero diagonals and will
return the first precinv ·m upper diagonals of g−1 otherwise.
If the program is used to do operations only involving the generators, it is recommendable to set precinv
to 1.

__pow__():
Let n be an integer (possibly zero or negative). Then g**n returns gn. In particular, note that the
inverse of g is returned both if we type g.inv or g**(-1).

conj():
g.conj(h) returns g−1hg (it may be in NX if g**(-1) is in NX).

comm():
g.comm(h) returns g−1h−1gh (it may be in NX if g**(-1) or h**(-1) is in NX).
comm() also computes higher commutators. That is: g.comm(y0,...,yj) returns the higher commuta-
tor [g, y0, ..., yj] = [[..[g, y0], ..., yj−1], yj ].

commr():
g.commr(y0,...,yj) returns the higher commutator [g, y0, ..., yj] = [g, [y0, ..., [yj−1, yj ]...]].Note that
g.commr(h) is the same as g.comm(h).

trunc(n):
g.trunc(n) returns the element in NX (see Section 3), whose diagonal and first n − 1 upper diagonals
agree with the diagonal and first n− 1 upper diagonals of g.

Example 3.

>>> x0**(-1)
N ([[11773, 11773, 11773], [2241, 2241, 2241], [5859, 5859, 5859], [3699, 3699, 3699],
[4401, 4401, 0], [2970, 0, 0]])
>>> g=N(x0.m[0],x0.m[1],x0.m[2])
>>> g**(-1)
N ([[11773, 11773, 11773], [2241, 2241, 2241], [5859, 5859, 5859]],?)
>>> precinv=5
>>> x0**(-1)
N ([[11773, 11773, 11773], [2241, 2241, 2241], [5859, 5859, 5859], [3699, 3699, 3699],
[4401, 4401, 0], [2970, 0, 0]])
>>> g**(-1)
N ([[11773, 11773, 11773], [2241, 2241, 2241], [5859, 5859, 5859], [1458, 1458, 1458],
[1458, 1458, 1458]])

Example 4.

>>> a=x0.conj(x1)
>>> a
N ([[9613, 10641, 13891], [18198, 6196, 2999], [11637, 2188, 17037], [5103, 4321, 2235],
[10584, 13793, 840], [1053, 1515, 951], [5130, 1491, 16878], [2970, 11721, 2187],
[14607, 4374, 4374], [2187, 2187, 2187], [4374, 4374, 0], [2187, 0, 0]])
>>> a.trunc(6)
N ([[9613, 10641, 13891], [18198, 6196, 2999], [11637, 2188, 17037], [5103, 4321, 2235],
[10584, 13793, 840], [1053, 1515, 951]],?)
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>>> x0.commr(x1,x2)==x0.comm(x1.comm(x2))
True
>>> x0.comm(x1,x2)==(x0.comm(x1)).comm(x2)
True
>>> x0*x1*x4
Id

3 The class NX

3.1 Instances of NX

An instance g of NX differs from one of N only for the fact that we have information about the first say
l upper diagonals of g, but we do not know what the other upper diagonals look like.
We define an element g in NX in the following way. Let V1, ..., Vl be 3×9matrices. Then g=NX(V1,...,Vl)
defines the element of NX with the diagonal described by V1 and l−1 upper diagonals defined, in order, by
V2, ..., Vl. Similarly to N, the matrices V1, ..., Vl may be replaced by the corresponding 3-tuples of numbers.

print g:
The command print g gives N([V1,...,Vl],?) and we can call [V1, ..., Vl] by g.l.

g:
The difference between print g and g in NX is analogous to the difference between the same commands
in N.

3.2 Operations within the class NX

Except for == and !=, all the other functions listed in 2.2 can also be used with arguments belonging to
NX. The output of *, **, inv() conj(), comm(), will in this case be an element in NX (except for when
we raise an element to the power 0, which gives Id).

Example 5.

>>> x=NX(x0.m[0],x0.m[1])
>>> y=NX(x1.m[0],x1.m[1])
>>> z=NX(x4.m[0],x4.m[1])
>>> x*y*z
N ([[6643, 6643, 6643], [0, 0, 0]],?)
>>> x**(-1)
N ([[11773, 11773, 11773], [2241, 2241, 2241]],?)
>>> x.conj(y)
N ([[9613, 10641, 13891], [18198, 6196, 2999]],?)
>>> res=x.comm(z)
>>> res
N ([[6643, 17650, 10871], [5130, 2948, 5946]],?)
>>> res.trunc(10)
N ([[6643, 17650, 10871], [5130, 2948, 5946]],?)

4 Operations among classes and comparison operators
As well as multiplying, taking conjugates and commutators of instances of the same class, one can
perform these operations with one element in N and one in NX. The outcome will obviously belong to NX.

Example 6.
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>>> x
N ([[9613, 9613, 9613], [5859, 5859, 5859], [2970, 2970, 2970]],?)
>>> x*x1*x4
N ([[6643, 6643, 6643], [0, 0, 0], [0, 0, 0]],?)
>>> x.comm(x1)
N ([[6643, 2305, 17650], [3699, 1517, 5893], [4401, 762, 3675]],?)

Besides, we can compare two elements of NX or one element of N and one of NX with the operators
>, <, >=, <=. The output is explained in what follows. For an element g of NX we denote by l(g) the
number of known diagonals.

__gt__():
Let g be an instance of NX and h an instance of N or NX. Then g>h returns True if all the first l(g) upper
diagonals of g agree with the first l(g) upper diagonals of h and, in the case of h in NX, l(g) < l(h).

__ge__():
Let g be an instance of NX and h an instance of N or NX. Then g>=h returns True if all the first l(g)
upper diagonals of g agree with the first l(g) upper diagonals of h.

__lt__():
Let g be an instance of N or NX and h an instance of NX. Then g<h returns True if all the first l(h) upper
diagonals of g agree with the first l(h) upper diagonals of h and, in the case of h in NX, l(h) < l(g).

__le__():
Let g be an instance of N or NX and h an instance of NX. Then g<=h returns True if all the first l(h)
diagonals of h agree with the first l(h) upper diagonals of g.

Example 7.

>>> x=NX(x0.m[0],x0.m[1])
>>> y=NX(x0.m[0],x0.m[1],x0.m[2])
>>> x0<x
True
>>> x<y
False
>>> x>y
True
>>> z=x
>>> (x<z) or (z<x)
False
>>> (x<=z) and (x>=z)
True
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